Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Int Immunopharmacol ; 123: 110750, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37536181

ABSTRACT

Leishmaniasis, presenting the highest number of cases worldwide is one of the most serious Neglected Tropical Diseases (NTDs). Clinical manifestations are intrinsically related to the host's immune response making immunomodulatory substances the target of numerous studies on antileishmanial activity. The currently available drugs used for treatment present various problems including high toxicity, low efficacy, and associated drug resistance. The search for therapeutic alternatives is urgent, and in this context, thiophene derivatives appear to be a promising therapeutic alternative (many have shown promising anti-leishmanial activity). The objective of this study was to investigate the antileishmanial activity of the 2-amino-thiophenic derivative SB-200. The thiophenic derivative was effective in inhibiting the growth of Leishmania braziliensis, Leishmania major, and Leishmania infantum promastigotes, obtaining respective IC50 values of 4.25 µM, 4.65 µM, and 3.96 µM. For L. infantum, it was demonstrated that the antipromastigote effect of SB-200 is associated with cell membrane integrity losses, and with morphological changes observed during scanning and transmission electron microscopy. Cytotoxicity was performed for J774.A1 macrophages and VERO cells, to obtain a CC50 of 42.52 µM and a SI of 10.74 for macrophages and a CC50 of 39.2 µM and an SI of 9.89 for VERO cells. The anti-amastigote activity of SB-200 revealed an IC50 of 2.85 µM and an SI of 14.97 against macrophages and SI of 13.8 for VERO cells. The anti-amastigote activity of SB-200 is associated with in vitro immunomodulation. For acute toxicity, SB-200 against Zophobas morio larvae permitted 100% survival. We conclude that the 2-amino-thiophenic derivative SB-200 is a promising candidate for in vivo anti-leishmania drug tests to evaluate its activity, efficacy, and safety.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Leishmaniasis , Animals , Chlorocebus aethiops , Mice , Vero Cells , Thiophenes/pharmacology , Thiophenes/therapeutic use , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Leishmaniasis/drug therapy , Mice, Inbred BALB C
2.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-37259336

ABSTRACT

Leishmaniasis is a group of infectious-parasitic diseases with high mortality rates, and endemic in many regions of the globe. The currently available drugs present serious problems such as high toxicity, costs, and the emergence of drug resistance. This has stimulated research into new antileishmania drugs based on natural products and their derivatives. ß-Ocimene is a monoterpene found naturally in the essential oils of many plant species which presents antileishmanial activity, and which has not yet been evaluated for its potential to inhibit the etiological agent of leishmaniasis. The aim of this work was to evaluate the activity of ß-ocimene against Leishmania amazonensis, its cytotoxicity, and potential mechanisms of action. ß-Ocimene presented direct activity against the parasite, with excellent growth inhibition of promastigotes (IC50 = 2.78 µM) and axenic amastigotes (EC50 = 1.12 µM) at concentrations non-toxic to RAW 264.7 macrophages (CC50 = 114.5 µM). The effect is related to changes in membrane permeability and resulting abnormalities in the parasitic cell shape. These were, respectively, observed in membrane integrity and atomic force microscopy assays. ß-Ocimene was also shown to act indirectly, with greater activity against intra-macrophagic amastigotes (EC50 = 0.89 µM), increasing TNF-α, nitric oxide (NO), and reactive oxygen species (ROS), with lysosomal effects, as well as promoting decreases in IL-10 and IL-6. Against intra-macrophagic amastigote forms the selectivity index was higher than the reference drugs, being 469.52 times more selective than meglumine antimoniate, and 42.88 times more selective than amphotericin B. Our results suggest that ß-ocimene possesses promising in vitro antileishmania activity and is a potential candidate for investigation in in vivo assays.

3.
Int J Biol Macromol ; 230: 123272, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36649864

ABSTRACT

Nanotechnology is a crucial technology in recent years has resulted in new and creative applications of nanomedicine. Polymeric nanoparticles have increasing demands in pharmaceutical applications and require high reproducibility, homogeneity, and control over their properties. Work explores the use of cashew phthalate gum (PCG) as a particle-forming polymer. PCG exhibited a pH-sensitive behavior due to the of acid groups on its chains, and control drug release. We report the development of nanoparticles carrying benznidazole. Formulations were characterized by DLS, encapsulation efficiency, drug loading, FTIR, pH-responsive behavior, release, and in vitro kinetics. Interaction between polymer and drug was an evaluated by molecular dynamics. Morphology was observed by SEM, and in vitro cytotoxicity by MTT assay. Trypanocidal effect for epimastigote and trypomastigote forms was also evaluated. NPs responded to the slightly basic pH, triggering the release of BNZ. In acidic medium, they presented small size, spherical shape, and good stability. It was indicated NP with enhanced biological activity, reduced cytotoxicity, high anti T. cruzi performance, and pH-sensitive release. This work investigated properties related to the development and enhancement of nanoparticles. PCG has specific physicochemical properties that make it a promising alternative to drug delivery, however, there are still challenges to be overcome.


Subject(s)
Anacardium , Nanoparticles , Trypanosoma cruzi , Reproducibility of Results , Nanoparticles/chemistry , Drug Liberation , Polymers/pharmacology , Hydrogen-Ion Concentration , Drug Carriers/pharmacology
4.
Biomolecules ; 14(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38254626

ABSTRACT

Leishmaniasis is a complex group of infectious and parasitic diseases that afflict many thousands of individuals across five continents. Leishmaniasis treatment remains a challenge because it relies on drugsknown for their high toxicity and limited efficacy, making itimperative to identify new molecules that offer greater effectiveness and safety. This study sought to explore the impact of seven synthetic guanidine derivatives (LQOF-G1, LQOF-G2, LQOF-G6, LQOF-G7, LQOF-G32, LQOF-G35 and LQOF-G36) onthe parasite Leishmania (Viannia) braziliensis and in vitro macrophage infection by this parasite, as well as cytotoxic approaches in vitro models of mammalian host cells and tissues. The synthesized compounds showed purity ≥ 99.65% and effectively inhibited parasite growth. LQOF-G1 proved the most potent, yielding the best half-maximal inhibitory concentration (IC50) values against promastigotes (4.62 µmol/L), axenic amastigotes (4.27 µmol/L), and intracellular amastigotes (3.65 µmol/L). Notably, the antileishmanial activity of LQOF-G1, LQOF-G2, and LQOF-G6 was related to immunomodulatory effects, evidenced by alterations in TNF-α, IL-12, IL-10, nitric oxide (NO), and reactive oxygen species (ROS) levels in the supernatant of culture macrophages infected with L. (V.) braziliensis and coincubated with these compounds. LQOF-G2 and LQOF-G36 compounds exhibited vasodilator and spasmolytic effects at higher concentrations (≥100 µmol/L). Generally, LQOF-G1, LQOF-G2, and LQOF-G32 compounds were found to be nontoxic to assessed organs and cells. No toxic effects were observed in human cell lines, such as HEK-293, CaCo-2 and A549, at concentrations ≥ 500 µmol/L. Collectively, data have shown unequivocal evidence of the effectiveness of these compounds against L. (V.) braziliensis parasite, one of the causative agents of Tegumentary Leishmaniasis and Mucocutaneous Leishmaniasis in America.


Subject(s)
Leishmania braziliensis , Leishmaniasis , Animals , Humans , Guanidines , Caco-2 Cells , HEK293 Cells , Guanidine , Immunity, Innate , Mammals
5.
Int Immunopharmacol ; 100: 108130, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34500286

ABSTRACT

Leishmaniasis is a set of infectious diseases with high rates of morbidity and mortality, it affects millions of people around the world. Treatment, mainly with pentavalent antimonials, presents significant toxicity and many cases of resistance. In previous works we have demonstrated the effective and selective antileishmanial activity of Eugenia uniflora L. essential oil, being constituted (47.3%) by the sesquiterpene curzerene. Considering the high rate of parasite inhibition demonstrated for E. uniflora essential oil, and the significant presence of curzerene in the oil, this study aimed to evaluate its antileishmania activity and possible mechanisms of action. Curzerene was effective in inhibiting the growth of promastigotes (IC50 3.09 ± 0.14 µM) and axenic amastigotes (EC50 2.56 ± 0.12 µM), with low cytotoxicity to RAW 264.7 macrophages (CC50 83.87 ± 4.63 µM). It was observed that curzerene has direct effects on the parasite, inducing cell death by apoptosis with secondary necrotic effects (producing pores in the plasma membrane). Curzerene proved to be even more effective against intra-macrophage amastigote forms, with an EC50 of 0.46 ± 0.02 µM. The selectivity index demonstrated by curzerene on these parasite forms was 182.32, being respectively 44.15 and 8.47 times more selective than meglumine antimoniate and amphotericin B. The antiamastigote activity of curzerene was associated with immunomodulatory activity, as it increased TNF-α, IL-12, and NO levels, and lysosomal activity, and decreased IL-10 and IL-6 cytokine levels detected in macrophages infected and treated. In conclusion, our results demonstrate that curzerene is an effective and selective antileishmanial agent, a candidate for in vivo investigation in models of antileishmanial activity.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania mexicana/drug effects , Sesquiterpenes/pharmacology , Animals , Antiprotozoal Agents/therapeutic use , Apoptosis/drug effects , Humans , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-12/metabolism , Interleukin-6/metabolism , Leishmania mexicana/growth & development , Macrophages/drug effects , Mice , Mice, Transgenic , Molecular Docking Simulation , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism
6.
Rev. colomb. ciencias quim. farm ; 50(2): 505-521, mayo-ago. 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1347337

ABSTRACT

SUMMARY Introduction: Leishmaniasis is a disease caused by protozoa of the genus Leishmania and is considered endemic in 98 countries. Treatment with pentavalent antimonials has a high toxicity, which motivates the search for effective and less toxic drugs. α- and β-lapachones have shown different biological activities, including antiprotozoa. In recent studies, the isonicotinoylhydrazone and phthalazinylhydrazone groups were considered innovative in the development of antileishmania drugs. Molecular hybridization is a strategy for the rational development of new prototypes, where the main compound is produced through the appropriate binding of pharmacophoric subunits. Aims: To synthesize four hybrids of α- and β-lapachones, together with the isonicotinoylhydrazone and phthalazinylhydrazone groups and to determine the antileishmania activity against the promastigotic forms of L. amazonensis, L. infantum and L. major. Results: β-lapachone derivatives were more active against all tested leishmania species. βACIL (IC50 0.044μM) and βHDZ (IC50 0.023μM) showed 15-fold higher activity than amphotericin B. The high selectivity index exhibited by the compounds indicates greater safety for vertebrate host cells. Conclusion: The results of this work show that the hybrids βACIL and (3HDZ are promising molecules for the development of new antileishmania drugs.


RESUMEN Introducción: Leishmaniasis es una enfermedad causada por protozoos del género Leishmania y se considera endémica en 98 países. El tratamiento con antimoniales pentavalentes tiene una alta toxicidad, lo que motiva la búsqueda de fármacos eficaces y menos tóxico. α- y β-lapachones han mostrado diferentes actividades biológicas, incluido los antiprotozoarios. En estudios recientes, los grupos isonicotinoilhidra-zona y ftalazinilhidrazona se consideraron innovadores en el desarrollo de fármacos antileishmania. La hibridación molecular es una estrategia para el desarrollo racional de nuevos prototipos, donde el compuesto principal se produce a través de la unión apropiada de subunidades farmacofóricas. Objetivos: Sintetizar cuatro híbridos de α- y β-lapachones, junto con los grupos isonicotinoilhidrazona y ftalazinilhidrazona y determinar la actividad antileishmania frente a las formas promastigotas de L. amazonensis, L. infantum y L. major. Resultados: Los derivados de β-lapachone fueron más activos contra todas las especies de leishmania probadas. La βACIL (CI50 0,044μM) y βHDZ (CI50 0,023μM) mostraron actividad 15 veces mayor que la anfotericina B. El alto índice de selectividad que presentan los compuestos indica una mayor seguridad para las células huésped del vertebrado. Conclusión: Los resultados de este trabajo demuestran que los híbridos (ACIL y (HDZ son moléculas prometodoras para el desarrollo de nuevos fármacos antileishmania.


RESUMO Introdução: A leishmaniose é uma doença causada por protozoários do género Leishmania e é considerada endémica em 98 países. O tratamento com antimoniais pentavalentes apresenta alta toxicidade, o que motiva a pesquisa por medicamentos eficazes e menos tóxicos. α- e β-lapachones tém mostrado diferentes atividades biológicas, incluindo antiprotozoários. Em estudos recentes, os grupos isonicotinoilhi-drazona e ftalazinilhidrazona foram considerados inovadores no desenvolvimento de drogas antileishmania. A hibridização molecular é uma estratégia para o desenvolvimento racional de novos protótipos, onde o composto principal é produzido através da ligação apropriada de subunidades farmacofóricas. Objetivos: Sintetizar quatro híbridos de α- e β-lapachones, juntamente com os grupos isonicotinoil-hidra-zona e ftalazinilhidrazona e determinar a atividade antileishmania contra as formas promastigóticas de L. amazonensis, L. infantum e L. major. Resultados: Os derivados de β-lapachona foram mais ativos contra todas as espécies de leishmania testadas. BACIL (IC50 0,044 μM) e βHDZ (IC50 0,023 μM) apresentaram atividade 15 vezes maior do que a anfotericina B. O alto índice de seletividade dos compostos indica maior segurança para células hospedeiras de vertebrados. Conclusaõ: Os resultados deste trabalho mostram que os híbridos βACIL e βHDZ são moléculas promissoras para o desenvolvimento de novos fármacos antileishmania.

7.
Toxicol In Vitro ; 74: 105158, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33823240

ABSTRACT

BACKGROUND: Leishmaniasis is a parasitosis with a wide incidence in developing countries. The drugs which are indicated for the treatment of this infection usually are able to promote high toxicity. PURPOSE: A combination of limonene and carvacrol, monoterpenes present in plants with antiparasitic activity may constitute an alternative for the treatment of these diseases. METHODS: In this study, the antileishmania activity against Leishmania major, cytotoxicity tests, assessment of synergism, parasite membrane damage tests as well as molecular docking and immunomodulatory activity of limonene-carvacrol (Lim-Car) combination were evaluated. RESULTS: The Lim-Car combination (5:0; 1:1; 1:4; 2:3; 3:2; 4:1 and 0:5) showed potential antileishmania activity, with mean inhibitory concentration (IC50) ranging from 5.8 to 19.0 µg.mL-1. They demonstrated mean cytotoxic concentration (CC50) ranging from 94.1 to 176.0 µg.mL-1, and did not show significant hemolytic effect. In the investigation of synergistic interaction, the 4:1 Lim-Car combination showed better fractional inhibitory concentration (FIC) index as well as better activity on amastigotes and IS. The samples caused considerable damage to the parasite membrane this monoterpene activity seems to be more related to Trypanothione Reductase (TryR) enzyme interaction, demonstrated in the molecular docking assay. In addition, the 4:1 Lim-Car combination stimulated macrophage activation, and showed at was the best association, with reduction of infection and infectivity of parasitized macrophages. CONCLUSION: The 4:1 Lim-Car combination appears to be a promising candidate as a monotherapeutic antileishmania agent.


Subject(s)
Antiprotozoal Agents/toxicity , Cymenes/toxicity , Immunologic Factors/toxicity , Leishmania major/drug effects , Limonene/toxicity , Animals , Cell Survival/drug effects , DNA-Directed DNA Polymerase/metabolism , Drug Combinations , Drug Synergism , Erythrocytes/drug effects , Hemolysis/drug effects , Lysosomes/drug effects , Macrophages/drug effects , Macrophages/parasitology , Molecular Docking Simulation , NADH, NADPH Oxidoreductases/metabolism , Protozoan Proteins/metabolism , Sheep
8.
Chem Biol Interact ; 339: 109429, 2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33713644

ABSTRACT

Leishmaniasis is considered as one of the most Neglected Tropical Diseases (NTDs) in the world, caused by protozoan parasites of the genus Leishmania. Treatment of leishmaniasis by chemotherapy remains a challenge because of limited efficacy, toxic side effects, and drug resistance. The search for new therapeutic agents from natural sources has been a constant for the treatment of diseases such as leishmaniasis. The objective of this study was to evaluate the biological activity of Eugenia piauhiensis Vellaff. essential oil (EpEO) and its major constituent γ-elemene on promastigote and amastigote forms of Leishmania (Leishmania) amazonensis, its cytotoxicity, and possible mechanisms of action. EpEO was more active (IC50 6.43 ± 0.18 µg/mL) against promastigotes than γ-elemene [9.82 ± 0.15 µg/mL (48.05 ± 0.73 µM)] and the reference drug miltefosine [IC50 17.25 ± 0.26 µg/mL (42.32 ± 0.64 µM)]. EpEO and γ-elemene exhibited low cytotoxicity against J774.A1 macrophages, with CC50 225.8 ± 3.57 µg/mL and 213.21 ± 3.3 µg/mL (1043 ± 16.15 µM), respectively. Additionally, EpEO and γ-elemene present direct activity against the parasite, decreasing plasma membrane integrity. EpEO and γ-elemene also proved to be even more active against intracellular amastigotes of the parasite [IC50 4.59 ± 0.07 µg/mL and 8.06 ± 0.12 µg/mL (39.44 ± 0.59 µM)], respectively), presenting indirect effects through macrophage activity modulation. Anti-amastigote activity was associated with increased TNF-α, IL-12, NO, and ROS levels. In conclusion, our results suggest EpEO and γ-elemene as promising candidates for new drug development against leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Cell Membrane/drug effects , Eugenia/chemistry , Immunomodulation/drug effects , Leishmania mexicana/drug effects , Oils, Volatile/pharmacology , Sesquiterpenes/pharmacology , Animals , Cell Line , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Macrophages/parasitology , Mice , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology
9.
Int Immunopharmacol ; 90: 107124, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33168414

ABSTRACT

Leishmaniasis is caused by several protozoan species of Leishmania, and being endemically present in 98 countries around the world, it is also a severe public-health problem. The available antileishmanial drugs are toxic and yet present risks of recurrent infection. Efforts to find new, effective, and safe oral agents for the treatment of leishmaniasis are continuing throughout the world. This work aimed to evaluate the antileishmania activity of cordiaquinone E (CORe), isolated from the roots of Cordia polycephala (Lam.) I. M. Johnston. Cytotoxicity, and possible mechanisms of action against promastigote and amastigote forms of Leishmania amazonensis were examined. CORe was effective in inhibiting promastigote (IC50 4.5 ± 0.3 µM) and axenic amastigote (IC50 2.89 ± 0.11 µM) growth in concentrations found non-toxic for the host cell (CC50 246.81 ± 14.5 µM). Our results revealed that CORe presents direct activity against the parasite, inducing cell death by apoptosis. CORe present greater activity against intracellular amastigotes (EC50 1.92 ± 0.2 µM), yet with much higher selectivity indexes than the reference drugs, being respectively more benign towards RAW 264.7 macrophages than meglumine antimoniate and amphotericin B, (respectively by 4.68 and 42.84 fold). The antiamastigote activity was associated with increased TNF-α, IL-12, NO, and ROS levels, as well as decreased IL-10 levels. These results encourage the progression of studies on this compound for the development of new leishmanicidal agents.


Subject(s)
Leishmania mexicana/drug effects , Leishmaniasis, Cutaneous/drug therapy , Macrophages/drug effects , Naphthoquinones/pharmacology , Trypanocidal Agents/pharmacology , Animals , Apoptosis/drug effects , Cytokines/metabolism , Dose-Response Relationship, Drug , HL-60 Cells , Host-Parasite Interactions , Humans , Leishmania mexicana/growth & development , Leishmaniasis, Cutaneous/metabolism , Leishmaniasis, Cutaneous/parasitology , Macrophages/metabolism , Macrophages/parasitology , Mice , Naphthoquinones/toxicity , Nitric Oxide/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Trypanocidal Agents/toxicity
10.
Molecules ; 25(10)2020 May 12.
Article in English | MEDLINE | ID: mdl-32408657

ABSTRACT

Leishmaniasis is endemic in at least 98 countries. Due to the high toxicity and resistance associated with the drugs, we chose lignans as an alternative, due to their favorable properties of absorption, distribution, metabolism, excretion, and toxicity (ADMET). To investigate their leishmanicidal potential, the biological activities of a set of 160 lignans were predicted using predictive models that were built using data for Leishmania major and L. (Viannia) braziliensis. A combined analysis, based on ligand and structure, and several other computational approaches were used. The results showed that the combined analysis was able to select 11 lignans with potential activity against L. major and 21 lignans against L. braziliensis, with multitargeting effects and low or no toxicity. Of these compounds, four were isolated from the species Justicia aequilabris (Nees) Lindau. All of the identified compounds were able to inhibit the growth of L. braziliensis promastigotes, with the most active compound, (159) epipinoresinol-4-O-ß-d-glucopyranoside, presenting an IC50 value of 5.39 µM and IC50 value of 36.51 µM for L. major. Our findings indicated the potential of computer-aided drug design and development and demonstrated that lignans represent promising prototype compounds for the development of multitarget drugs against leishmaniasis.


Subject(s)
Antiprotozoal Agents/chemistry , Drug Design , Leishmania braziliensis/growth & development , Leishmania major/growth & development , Lignans , Molecular Docking Simulation , Drug Evaluation, Preclinical , Lignans/chemistry , Lignans/pharmacology
11.
Chem Biol Interact ; 320: 109026, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32112863

ABSTRACT

Leishmaniasis is a widespread tropical infection caused by different species of Leishmania protozoa. Many of the available drugs against the disease are toxic and in certain cases parasite drug resistance is developed. The discovery of drugs for the treatment of leishmaniasis is a pressing concern. In the present work, we describe in vitro studies of the phenolic compound methyl gallate (MG) against Leishmania (Leishmania) amazonensis and its possible mechanisms of action. The in vitro activity of MG was assayed against L. amazonensis (promastigotes, axenic amastigotes, and intramacrophagic amastigotes). Cytotoxicity tests were performed with J774A.1 macrophages and THP-1 cell derived macrophages. To evaluate mechanisms of action, we analyzed cellular TNF-α, IL-12, IFN-γ, IL-10, IL-6, NO, ROS levels, arginase activity, and structural mechanisms (phagocytic and lysosomal activities) involving macrophage activation. Meglumine antimoniate and amphotericin B were used as reference drugs. It was observed that MG effectively inhibited the growth of both promastigote (IC50 5.71 µM) and amastigote-like forms (EC50 5.39 µM), with much higher selectivity indexes than the reference drugs, being more benign towards J774A.1 macrophages than meglumine antimoniate and amphotericin B, at 1631- and 70.92-fold respectively, with respect to the promastigote form. Additionally, MG proved to be even more active against intracellular amastigotes of the parasite (EC50 4.24 µM). Our results showed that antileishmania activity was associated with increased TNF-α, IL-12, NO and ROS levels, as well as decreased IL-6 and decreased arginase activity. In addition, MG induced increased phagocytic capability, and lysosomal volume in macrophages; structural parameters of microbicidal activity. Taken together, our results suggest that MG may be a promising candidate for new drug development against leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Gallic Acid/analogs & derivatives , Leishmania/drug effects , Amphotericin B/pharmacology , Antiprotozoal Agents/chemistry , Gallic Acid/adverse effects , Gallic Acid/chemistry , Gallic Acid/pharmacology , Gene Expression Regulation/drug effects , Macrophages/drug effects , Meglumine Antimoniate/pharmacology , Molecular Structure , Reactive Oxygen Species
12.
Biomed Pharmacother ; 108: 1670-1678, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30372869

ABSTRACT

Leishmaniasis, affecting more than 12 million people worldwide has become a severe public-health problem. The therapeutic arsenal against leishmaniasis is mainly administered by parenteral route; it is toxic, expensive, and associated with recurrence risk. The need for further therapeutic compounds research is pressing. In previous studies, we demonstrated the antileishmanial activities of ten 2-amino-thiophene derivatives, which evidenced the action of a compound, called SB-83, having expressive antileishmania activity in an in vitro infection model. In the present work, we describe preclinical studies of the thiophenic derivative SB-83, such as acute toxicity, genotoxicity, in vivo oral efficacy in a murine model, and in vitro antileishmanial activity against an L. amazonensis SbIII-resistant strain. Determining acute preclinical toxicity, the LD50 of SB-83 was estimated at 2500 mg/kg orally, with few behavioral changes in Swiss mice. Further, treatment with 2000 mg/kg of SB-83 did not induce in vivo genotoxic activity in the peripheral blood micronucleus assay. In 7 weeks of oral treatment, SB-83 reduced paw lesion size in L. amazonensis infected mice by 52.47 ± 5.32%, and decreased the parasite load of the popliteal lymph node and spleen at the highest dose tested (200 mg/kg) respectively by 42.57 ± 3.14%, and 100%, without presenting weight change or other changes of clinical importance in the biochemical and hematological profiles. The treatment of promastigotes and intracellular amastigotes of SbIII sensitive and resistant strains with SB-83 did not produce differences in antileishmania activity, which suggests no cross-resistance. Thus, this work demonstrated that SB-83 has potential as a new active drug candidate even when orally administered, which may become a new therapeutic alternative for the treatment of leishmaniasis.


Subject(s)
Antiprotozoal Agents/therapeutic use , Leishmaniasis/drug therapy , Thiophenes/therapeutic use , Administration, Oral , Animals , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/pharmacokinetics , Antiprotozoal Agents/pharmacology , Biological Availability , Cytokines/metabolism , Disease Models, Animal , Female , Interferon-gamma/metabolism , Interleukin-10/metabolism , Leishmania/drug effects , Leishmaniasis/parasitology , Leishmaniasis/pathology , Mice , Mutagens/toxicity , Parasite Load , Parasites/drug effects , Thiophenes/administration & dosage , Thiophenes/chemistry , Thiophenes/pharmacokinetics , Thiophenes/pharmacology , Toxicity Tests, Acute
13.
Chem Biol Drug Des ; 91(6): 1141-1155, 2018 06.
Article in English | MEDLINE | ID: mdl-29415325

ABSTRACT

In this study, we synthesized eight new compounds containing the 2-amino-cycloalkyl[b]thiophene and acridine moieties (ACT01 and ACS01 -ACS07 ). None tested compounds presented human erythrocyte cytotoxicity. The new compounds presented antipromastigote activity, where ACS01 and ACS02 derivatives presented significant antileishmanial activity, with better performance than the reference drugs (tri and pentavalent antimonials), with respective IC50 values of 9.60 ± 3.19 and 10.95 ± 3.96 µm. Additionally, these two derivatives were effective against antimony-resistant Leishmania (Leishmania) amazonensis strains. In addition, binding and fragmentation DNA assays were performed. It was observed that the antileishmanial activity of ACS01 is not associated with DNA fragmentation of the promastigote forms. However, it interacted with DNA with a binding constant of 104  m-1 . In partial least-squares studies, it was observed that the most active compounds (ACS01 and ACS02 ) showed lower values of amphiphilic moment descriptor, but there was a correlation between the lipophilicity of the molecules and antileishmanial activity. Furthermore, the docking molecular studies showed interactions between thiophene-acridine derivatives and the active site of pyruvate kinase enzyme with the major contribution of asparagine 152 residue for the interaction with thiophene moiety. Thus, the results suggested that the new thiophene-acridine derivatives are promising molecules as potential drug candidates.


Subject(s)
Acridines/chemistry , Antiprotozoal Agents/chemical synthesis , DNA, Protozoan/chemistry , Molecular Docking Simulation , Thiophenes/chemistry , Antiprotozoal Agents/metabolism , Antiprotozoal Agents/pharmacology , Binding Sites , Catalytic Domain , DNA, Protozoan/metabolism , Drug Resistance/drug effects , Erythrocytes/cytology , Erythrocytes/drug effects , Erythrocytes/metabolism , Hemolysis/drug effects , Humans , Inhibitory Concentration 50 , Least-Squares Analysis , Leishmania mexicana/drug effects , Leishmania mexicana/enzymology , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Pyruvate Kinase/chemistry , Pyruvate Kinase/metabolism , Structure-Activity Relationship
14.
Article in English | MEDLINE | ID: mdl-28852412

ABSTRACT

Platonia insignis Mart., popularly known as "bacurizeiro," is used in traditional medical practices based on its diverse biological properties. This study was aimed at evaluating the antileishmanial effects of the ethanol extract (EtOH-Ext), hexane fraction (Hex-F), and its main isolated Lupeol obtained from stem barks of P. insignis against Leishmania (Leishmania) amazonensis, as well as their cytotoxicity and possible mechanisms of action. The EtOH-Ext, Hex-F, and Lupeol inhibited the growth of L. amazonensis promastigote forms at IC50 of 174.24, 45.23, and 39.06 µg/mL, respectively, as well as L. amazonensis axenic amastigote forms at IC50 of 40.58, 35.87, and 44.10 µg/mL, respectively. The mean cytotoxic concentrations for macrophages (CC50) were higher than those for amastigotes (341.95, 71.65, and 144.0 µg/mL, resp.), indicating a selective cytotoxicity towards the parasite rather than the macrophages. Interestingly, all treatments promoted antileishmanial effect against macrophage-internalized amastigotes at concentrations lower than CC50. Furthermore, increases of lysosomal volume of macrophages treated with EtOH-Ext, Hex-F, and Lupeol were observed. On the other hand, only Lupeol stimulated increase of phagocytic capability of macrophages, suggesting this compound might be characterized as the biomarker for the antileishmanial effect of P. insignis stem bark, as well as the involvement of immunomodulatory mechanisms in this effect.

15.
Molecules ; 21(11)2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27834831

ABSTRACT

Leishmaniasis represents a series of severe neglected tropical diseases caused by protozoa of the genus Leishmania and is widely distributed around the world. Here, we present the syntheses of Morita-Baylis-Hillman adducts (MBHAs) prepared from eugenol, thymol and carvacrol, and their bioevaluation against promastigotes of Leishmania amazonensis. The new MBHAs are prepared in two steps from essential oils in moderate to good yields and present IC50 values in the range of 22.30-4.71 µM. Moreover, the selectivity index to the most potent compound is very high (SIrb > 84.92), far better than that of Glucantime® (SIrb 1.39) and amphotericin B (SIrb = 22.34). Conformational analysis were carried out at the M062X//6-31+G(d,p) level of theory to corroborate a hypothesis about the nitroaromatic bioreduction mechanism.


Subject(s)
Acrylates/chemical synthesis , Antiprotozoal Agents/chemical synthesis , Eugenol/chemistry , Leishmania/drug effects , Monoterpenes/chemistry , Thymol/chemistry , Acrylates/chemistry , Acrylates/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Cymenes , Drug Evaluation, Preclinical , Green Chemistry Technology/methods , In Vitro Techniques , Molecular Structure , Oils, Volatile/chemistry , Structure-Activity Relationship
16.
Toxicon ; 120: 128-32, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27530664

ABSTRACT

Neglected tropical diseases (NTD) are treated with toxic therapy of limited efficacy. Previously, we studied the antimicrobial effect of Dinoponera quadriceps venom (DqV) against bacteria. To continue the study, we report in this short communication the antimicrobial effect of DqV against Leishmania amazonensis and Trypanosoma cruzi. DqV inhibits the promastigote forms of L. amazonensis and all T. cruzi developmental forms, with low toxicity in host cells. DqV causes cell death in T. cruzi through necrotic and apoptotic mechanisms observed by staining the cells with annexin V-FITC (AX) and propidium iodide (PI), loss of mitochondrial membrane potential by flow cytometry analyses and confocal microscopy and morphological alterations, such as loss of membrane integrity and cell shrinkage by scanning electron microscopy (SEM). In conclusion, we suggest there is an antimicrobial effect also on parasites.


Subject(s)
Ant Venoms/therapeutic use , Ants , Leishmania/drug effects , Trypanosoma/drug effects , Animals , Ant Venoms/administration & dosage , Cell Line , Dose-Response Relationship, Drug , Leishmania/growth & development , Leishmania/ultrastructure , Macaca mulatta , Microscopy, Electron, Scanning , Trypanosoma/growth & development , Trypanosoma/ultrastructure
17.
Eur J Med Chem ; 106: 1-14, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26513640

ABSTRACT

This study evaluated the effects of 2-amino-thiophene derivatives on the promastigote and amastigote forms of Leishmania (Leishmania) amazonensis and their possible mechanisms of action. Initially, we evaluated the antileishmanial activity of ten 2-amino-thiophene derivatives on promastigote and axenic amastigote forms of Leishmania amazonensis and their cytotoxicity against murine macrophages and human red blood cells. Three promising compounds were selected for studies of the cell death process using flow cytometry analysis and a DNA fragmentation assay. The effects of the compounds were assessed on intramacrophagic amastigotes, and the modulation of cytokine and NO production was investigated. All thiophene derivatives showed antileishmanial activity against promastigotes and axenic amastigotes with less toxicity for murine macrophages and human red blood cells. The best values were obtained for compounds containing a lateral indole ring. Docking studies suggested that these compounds played an important role in inhibiting trypanothione reductase (TryR) activity. The selected compounds SB-200, SB-44, and SB-83 induced apoptosis in promastigotes involving phosphatidylserine externalization and DNA fragmentation in a pattern similar to that observed for the positive control. Additionally, SB-200, SB-44, and SB-83 significantly reduced the infection index of macrophages by the parasites; for compounds SB-200 and SB-83 this reduction was associated with increased TNF-α, IL-12, and NO levels. This study demonstrated the effective and selective action of 2-amino-thiophene derivatives against L. amazonensis, resulting in apoptosis-like cell death and immunomodulation in vitro. The results suggest that they are promising compounds for the development of new leishmanicidal drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Apoptosis/drug effects , Erythrocytes/drug effects , Immunomodulation/drug effects , Leishmania/drug effects , Macrophages/drug effects , Thiophenes/pharmacology , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/immunology , Apoptosis/immunology , Dose-Response Relationship, Drug , Erythrocytes/immunology , Erythrocytes/parasitology , Humans , Leishmania/immunology , Macrophages/immunology , Macrophages/parasitology , Mice , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry
18.
Article in English | MEDLINE | ID: mdl-25949264

ABSTRACT

The mosquito Aedes aegypti L. (Diptera: Culicidae) is the major vector of dengue and chikungunya fever. The lack of effective therapies and vaccines for these diseases highlights the need for alternative strategies to control the spread of virus. Therefore, this study investigated the larvicidal potential of essential oils from common plant species obtained from the Chapada das Mesas National Park, Brazil, against third instar A. aegypti larvae. The chemical composition of these oils was determined by gas chromatography coupled to mass spectrometry. The essential oils of Eugenia piauhiensis Vellaff., Myrcia erythroxylon O. Berg, Psidium myrsinites DC., and Siparuna camporum (Tul.) A. DC. were observed to be mainly composed of sesquiterpene hydrocarbons. The essential oil of Lippia gracilis Schauer was composed of oxygenated monoterpenes. Four of the five tested oils were effective against the A. aegypti larvae, with the lethal concentration (LC50) ranging from 230 to 292 mg/L after 24 h of exposure. Overall, this work demonstrated the possibility of developing larvicidal products against A. aegypti by using essential oils from the flora of the Brazilian Legal Amazon. This in turn demonstrates the potential of using natural resources for the control of disease vectors.

19.
J Ethnopharmacol ; 160: 32-40, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25460590

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Syzygium cumini (L.) Skeels (Myrtaceae), commonly known as "jambolão" in Brazil is widely used in folk medicine against leishmaniasis, inflammation, chronic diarrhea, and ulcers. It is one of the most commonly used plants for the treatment of diabetes worldwide. In previous studies, Syzygium cumini was shown to possess antihyperlipidemic and anti-allergic properties, and to exhibit good performance as an antimicrobial agent against bacteria, fungi, and protozoa parasites of the genus Leishmania and Trypanosoma. This study was aimed at evaluating the effects of S. cumini essential oil (ScEO) and its major component α-pinene on Leishmania (Leishmania) amazonensis, as well as their cytotoxicity and possible mechanisms of action. MATERIALS AND METHODS: To evaluate the anti-proliferative effect on Leishmania, effects on promastigote and axenic amastigote forms were assessed using tetrazolium salt (MTT) assay. The intramacrophagic amastigotes were exposed to ScEO and α-pinene to determine the survival index. To gain insight into the mechanism of action involved in the effect on the samples, we evaluated the modulation of macrophage activation state by observing structural (phagocytic and lysosomal activities) and cellular (nitric oxide increase) changes. To assess the safety profile of ScEO and α-pinene, murine macrophages and human red blood cells were treated with ScEO and α-pinene and the selectivity index was calculated for each treatment. RESULTS: α-Pinene was effective against Leishmania amazonensis promastigote forms, with a half-maximal inhibitory concentration (IC50) value of 19.7µg/mL. α-Pinene was more active (IC50 values of 16.1 and 15.6µg/mL against axenic and intracellular amastigotes, respectively) than ScEO (IC50 values of 43.9 and 38.1µg/mL against axenic and intracellular amastigotes, respectively). Our results showed that the anti-Leishmania effects were mediated by immunomodulatory activity, as evidenced by the observed increases in both phagocytic and lysosomal activity, and the elevated NO levels. ScEO and α-pinene exhibited low cytotoxicity against murine macrophages and human erythrocytes. The 50% cytotoxicity concentration (CC50) values for the macrophages in the MTT assay were 614.1 and 425.2µg/mL for ScEO and α-pinene, respectively, while the corresponding half-maximal hemolytic concentration (HC50) values were 874.3 and 233.3µg/mL. CONCLUSIONS: Taken together, the results demonstrate that ScEO and its major constituent α-pinene have significant anti-Leishmania activity, modulated by macrophage activation, with acceptable levels of cytotoxicity in murine macrophages and human erythrocytes. Further work is warranted, involving more in-depth mechanistic studies and in vivo investigations.


Subject(s)
Immunomodulation/drug effects , Leishmania/drug effects , Macrophages, Peritoneal/drug effects , Monoterpenes/pharmacology , Oils, Volatile/pharmacology , Syzygium , Animals , Bicyclic Monoterpenes , Cell Proliferation/drug effects , Cell Survival/drug effects , Erythrocytes/drug effects , Female , Humans , Inhibitory Concentration 50 , Leishmania/cytology , Male , Mice , Microbial Sensitivity Tests , Monoterpenes/adverse effects , Oils, Volatile/adverse effects
20.
Pharmacogn Mag ; 10(Suppl 3): S456-62, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25298660

ABSTRACT

BACKGROUND: Mimosa caesalpiniifolia Benth. (Leguminosae) is widely found in the Brazilian Northeast region and markedly contributes to production of pollen and honey, being considered an important honey plant in this region. OBJECTIVE: To investigate the chemical composition of the ethanol extract of leaves from M. caesalpiniifolia by GC-MS after derivatization (silylation), as well as to evaluate the in vitro and in vivo toxicological effects and androgenic activity in rats. MATERIALS AND METHODS: The ethanol extract of leaves from Mimosa caesalpiniifolia was submitted to derivatization by silylation and analyzed by gas chromatography-mass spectrometry (GC-MS) to identification of chemical constituents. In vitro toxicological evaluation was performed by MTT assay in murine macrophages and by Artemia salina lethality assay, and the in vivo acute oral toxicity and androgenic evaluation in rats. RESULTS: Totally, 32 components were detected: Phytol-TMS (11.66%), lactic acid-2TMS (9.16%), α-tocopherol-TMS (7.34%) and ß-sitosterol-TMS (6.80%) were the major constituents. At the concentrations analyzed, the ethanol extract showed low cytotoxicity against brine shrimp (Artemia salina) and murine macrophages. In addition, the extract did not exhibit any toxicological effect or androgenic activity in rats. CONCLUSIONS: The derivatization by silylation allowed a rapid identification of chemical compounds from the M. caesalpiniifolia leaves extract. Besides, this species presents a good safety profile as observed in toxicological studies, and possess a great potential in the production of herbal medicines or as for food consumption.

SELECTION OF CITATIONS
SEARCH DETAIL
...